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Abstract. In this paper we consider the worldsheet of the superstring as a non-commutative space. Some
additional terms can be added to the superstring action, such that for an ordinary worldsheet they are
zero. The expansion of this extended action up to the first order of the non-commutativity parameter
leads to the new supersymmetric action for the string. For the closed superstring, we obtain the boundary
state that describes a brane. From the open string point of view, the new boundary conditions on the
worldsheet bosons generalize the non-commutativity of spacetime. Finally, we suggest some definitions for
the non-commutativity parameter of the superstring worldsheet.

1 Introduction

Non-commutative geometry plays a fascinating role in
string theory. There has been a great deal of interest re-
cently in non-commutative theories, stimulated by their
connection with string theory and M-theory; for a review
and comprehensive list of references see [1] and [2–8]. The
idea that the coordinates of spacetime do not commute
at sufficiently small distance scales is related to the non-
perturbative backgrounds of string and M-theories [2–5,
8]. Non-commutativity on D-branes in the presence of a
constant background B-field was the original motivation
[2–4]. The worldvolume of a D-brane with a constant back-
ground B-field is a simple and concrete example of a non-
commutative spacetime, in which gauge and matter fields
live [2,6].

Non-commutative field theories have rich structures.
The embedding of these theories into string theory [3],
suggests that these structures may be directly relevant to
reconsidering the familiar notions of the superstrings and
the low energy limits of them. In other words, any change
in the string theory affects the whole non-commutativity.
Now we introduce some of these changes.

We consider the worldsheet of the superstring as a two
dimensional non-commutative space. Therefore we can in-
troduce some additional terms to the superstring action
so that for the ordinary worldsheet they are zero. For the
small non-commutativity parameter of the string world-
sheet we develop the worldsheet supersymmetry for this
action. The boundary conditions of an open string with
non-commutative worldsheet lead to the generalized non-
commutativity parameter of spacetime. In this case the
non-commutativity of spacetime is a consequence of the
B-field and the non-commutativity of the string world-
sheet. The closed string emitted from a brane with back-
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ground field has a boundary state that is generalized by
the non-commutativity of its worldsheet.

Our motivation for studying non-commutativity of the
string worldsheet is the following. If the worldsheet lives in
a non-commutative spacetime, it is natural to expect it to
inherit the non-commutativity from the spacetime. This
can be seen from the fact that the pull-back of the space-
time non-commutativity parameter on the string world-
sheet is not zero.

It is worth emphasizing that such theory is inherently
non-conformal. The parameter of non-commutativity in-
troduces a length scale in the worldsheet which breaks the
scale invariance and subsequently the conformal invari-
ance of the theory. Despite lack of conformal invariance,
for the following reasons we shall investigate the model.

From the renormalization group and flows it is shown
that a large (small) distance of the spacetime corresponds
to a small (large) distance of the worldsheet. In other
words we have the relation L2 = ln(Λ/µ), where Λ−1 is a
characteristic two dimensional distance that is very much
shorter than the two dimensional distance µ−1 that for the
worldsheet is seen and L is a characteristic spacetime dis-
tance [9]. In fact Λ is a two dimensional UV cut-off. Now
consider a finite UV cut-off. This will certainly break the
scale invariance of the worldsheet theory. If we allow the
scale invariance of the worldsheet to be broken at very
short distances on the worldsheet, we can interpret the
worldsheet non-commutativity parameter as the UV cut-
off for the worldsheet.

This paper is organized as follows. In Sect. 2, we briefly
review the superstring with an ordinary worldsheet. In
Sect. 3, we present a new action and the corresponding su-
persymmetry for the superstring with a non-commutative
worldsheet. In Sect. 4, we study the closed string and its
boundary state, which describes a brane. In Sect. 5, we
obtain the boundary conditions of the open string, in the
presence of a brane. In Sect. 6, some definitions for the
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non-commutativity parameter of the worldsheet of the su-
perstring is suggested.

2 Superstring with ordinary worldsheet

A superstring in the presence of a brane with background
fields is described by the action [10]

S = − 1
4πα′

∫

Σ

d2ξ(
√−hhabgµν∂aX

µ∂bX
ν

+ εabBµν∂aX
µ∂bX

ν − i
√−hgµνψ̄

µρa∂aψ
ν)

+
1

4πα′

∫

∂Σ

dζFαβ

(
Xα∂ζX

β +
i
2
θαθβ

)
, (1)

where Σ is the worldsheet of the string, and ∂Σ is its
boundary. The indices α, β, γ, · · ·, show the brane direc-
tions. The coordinate ζ is tangent to the boundary of the
string worldsheet. The field Bµν is the NS⊗NS massless
field, and Fαβ is the constant field strength of a U(1) gauge
field Aα. The field θµ is the following combination of the
components ψµ

1 and ψµ
2 of the worldsheet fermion ψµ,

θµ = ψµ
1 + iψµ

2 . (2)

Let Fαβ = 0, gµν = ηµν = diag(−1, 1, · · · , 1) and Bµν

be the constant background field. Also consider hab =
ηab = diag(−1, 1). Then the equations of motion are

(∂2
τ − ∂2

σ)Xµ = 0,
∂+ψ

µ
1 = 0,

∂−ψ
µ
2 = 0, (3)

where ∂± = (1/2)(∂τ ± ∂σ). The invariance of the action
under the worldsheet supersymmetry transformations

δXµ = ε̄ψµ,

δψµ = −iρa∂aX
µε (4)

leads to the following boundary state equations for the
closed superstring:

(∂τX
α −Bα

β∂σX
β)τ0 | B〉 = 0, (5)

(∂σX
i)τ0 | B〉 = 0 (6)

for the bosonic part, and

(ψα
1 − iψα

2 +Bα
β(ψβ

1 + iψβ
2 ))τ0 | B〉 = 0, (7)

(ψi
1 + iψi

2)τ0 | B〉 = 0 (8)

for the fermionic part. The indices i, j, · · · , show the trans-
verse directions of the brane. Since the presence of the
brane breaks half of the supersymmetry, for deriving (5)–
(8) we used the relation ε2 = iε1.

The boundary conditions of the open superstring are

(∂σX
α −Bα

β∂τX
β)σ0 = 0,

(∂τX
i)σ0 = 0,

(ψα
1 + iψα

2 +Bα
β(ψβ

1 − iψβ
2 ))σ0 = 0,

(ψi
1 − iψi

2)σ0 = 0, (9)

where the boundaries are at σ0 = 0, π.

3 Non-commutative worldsheet

Let ξ0 and ξ1 be the coordinates of the worldsheet of the
superstring. The “star product” between two arbitrary
functions f(ξ0, ξ1) and g(ξ0, ξ1) is

f(ξ0, ξ1) ∗ g(ξ0, ξ1) (10)

= exp
(

i
2
θab ∂

∂ζa

∂

∂ηb

)
f(ζ0, ζ1)g(η0, η1) |ζ=η=ξ .

Therefore, there is non-commutativity between ξ0 and ξ1,
i.e.

ξa ∗ ξb − ξb ∗ ξa = iθab. (11)

Later we shall discuss the antisymmetric tensor θab.
For the coordinates (σ, τ) let ηab be the metric of the

string worldsheet, then the superstring action under the
star product becomes

S∗ = − 1
4πα′

∫

Σ

d2σ(gµν∂aX
µ ∗ ∂aXν (12)

+ εabBµν∂aX
µ ∗ ∂bX

ν − igµνψ̄
µ ∗ ρa∂aψ

ν) + S̄∗,

where ε01 = −ε10 = 1. The action S̄∗ contains the bosonic
and the fermionic fields of the worldsheet, and when the
star product changes to the usual product, i.e. for θab = 0,
it vanishes. We consider S̄∗ as in the following:

S̄∗ = − 1
4πα′

∫

Σ

d2σ

(
CµνX

µ ∗Xν + kabAµν∂aX
µ ∗ ∂bX

ν

+
i
2
εabSµνψ̄

µ ∗ ρaρbψ
ν

)
, (13)

where Cµν and Aµν are arbitrary antisymmetric tensors
and Sµν and kab are arbitrary symmetric tensors. Many
other terms can be considered such that their usual prod-
uct vanish. For example the terms

Cµν∂a1 · · · ∂amX
µ ∗ ∂a1 · · · ∂amXν ,

kabAµν∂a1 · · · ∂al
∂aX

µ ∗ ∂a1 · · · ∂al∂bX
ν ,

εabSµν∂a1 · · · ∂an ψ̄
µ ∗ ρaρb∂

a1 · · · ∂anψν (14)

are zero for the usual product. The arbitrary numbers m, l
and n are positive integers. Because of the derivatives, we
do not introduce these terms to the action (13). After
expanding in terms of the powers of θab, the first non-
zero term of the second term of the action (13) contains
derivatives of order four; for simplification this term is
neglected too. Also there are other terms such as S(1)

µν ψ
µ
1 ∗

ψν
1 and S(2)

µν ψ
µ
2 ∗ψν

2 and their derivatives like (14), that for
symmetric matrices S(1)

µν and S
(2)
µν vanish under the usual

product. These terms do not have worldsheet covariant
forms, therefore we also put them away.

Now we consider the expansion of the action (12) up
to the first order of θab and study closed and open super-
strings of it:

S∗ = − 1
4πα′

∫

Σ

d2σ

(
gµν∂aX

µ∂aXν + εabBµν∂aX
µ∂bX

ν
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− igµνψ̄
µρa∂aψ

ν +
1
2
θabgµν∂aψ̄

µρa′
∂a′∂bψ

ν

− 1
4
εa

′b′
θabSµν∂aψ̄

µρa′ρb′∂bψ
ν

+
i
2
θabCµν∂aX

µ∂bX
ν

)
+ O(θ2). (15)

The second term and the last three terms are total deriva-
tives. Note that θab has only one independent component;
therefore it can be written as

θab = θεab. (16)

In the coordinate system (σ, τ) we choose θ as a constant
parameter.

Let us define B′
µν as follows:

B′
µν = Bµν +

i

2
θCµν . (17)

Therefore the B-term and C-term of the action (15) can
be combined to a B′-term. If we assume Cµν to be a lin-
ear combination of Bµν and Fµν (field strength of a U(1)
gauge field)

Cµν = aFµν + bBµν , (18)

gauge invariance of B′
µν under the gauge transformations

Aµ → Aµ + Λµ,

Bµν → Bµν + ∂µΛν − ∂νΛµ, (19)

requires the following relation between coefficients “a” and
“b” and the parameter θ:

2 + iθ(a+ b) = 0. (20)

This equation implies a �= −b, which means if B′
µν is a

gauge invariant field, that Cµν in the form of combination
(18) is not gauge invariant.

From now on we neglect O(θ2) in the action (15). Let
Sµν and Cµν be constant, i.e. independent of the space-
time coordinates. We introduce the new supersymmetry
transformations,

δXµ = ε̄ψµ − iθSµ
ν∂τ (ε̄ψν),

δψµ = −iρa∂aX
µε. (21)

These transformations form a closed algebra. To see this,
consider two successive transformations with supersym-
metry parameters ε and ε′; then

[δε, δε′ ]Xµ = δε(δε′Xµ) − (ε ↔ ε′)
= 2iε̄ρaε′(∂aX

µ − iθSµ
ν∂τ∂aX

ν) (22)

for the worldsheet bosons, and

[δε, δε′ ]ψµ = 2iε̄ρaε′(∂aψ
µ − iθSµ

ν∂τ∂aψ
ν) (23)

for the worldsheet fermions. To obtain the last equation,
one should use the equation of motion of ψµ, which is
ρa∂aψ

µ = 0.

As has been mentioned, the presence of a brane breaks
half of the supersymmetry. For ε2 = iε1 ≡ iε, the above
transformations become

δXµ = −ε(θµ − iθSµ
ν∂τθ

ν),
δψµ

1 = −2iε∂−Xµ,

δψµ
2 = 2ε∂+X

µ. (24)

We shall use these transformations to obtain the boundary
conditions of superstrings.

4 Closed superstring

For the closed superstring let the metric gµν be ηµν . Now
we concentrate to the R⊗R and the NS⊗NS sectors of the
type II superstring. These sectors imply that the surface
terms of the variation of the action (15) vanish. This vari-
ation gives the boundary state equations for the closed
superstring, emitted from the brane, as

(∂τX
α −B′α

β∂σX
β −B′α

i∂σX
i)τ0 | B〉 = 0, (25)

(δXi)τ0 | B〉 = 0 (26)

for the bosonic part. Equation (26) implies that ∂σX
i van-

ishes on the boundary, and will be dropped from (25).
From now on we assume that the mixed components of
Sµν are zero, i.e.

Siα = 0. (27)

According to the supersymmetry transformations (24) and
the bosonic part of the boundary state equations, i.e. (25)
and (26), there are the following boundary state equations
for the worldsheet fermions:

(ψi
1 + iψi

2 − iθSi
j∂τ (ψj

1 + iψj
2))τ0 | B〉 = 0, (28)

(ψα
1 − iψα

2 +B′α
β(ψβ

1 + iψβ
2 ) + iθSα

β∂τ (ψβ
1 − iψβ

2 )

−iθB′α
βS

β
γ∂τ (ψγ

1 + iψγ
2 ))τ0 | B〉 = 0. (29)

As expected, these equations respect the supersymmetry
transformations. We explicitly show this. That is, from
the fermionic boundary conditions (28) and (29) and the
supersymmetry transformations, we obtain the bosonic
boundary conditions (25) and (26). Equation (28) and the
first transformation of (24) give the transverse bosonic
boundary condition (26).

To see the consistence of (25) and (29), let us write the
supersymmetry transformations of the left and the right
moving parts of Xµ

δXµ
L = −iε(ψµ

2 − θSµ
ν∂τψ

ν
1 ),

δXµ
R = −ε(ψµ

1 + θSµ
ν∂τψ

ν
2 ). (30)

The sum of these transformations gives δXµ of (24). The
difference of these gives

δX ′µ = δXµ
L − δXµ

R

= ε(λµ + iθSµ
ν∂τλ

ν), (31)
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where λµ is

λµ ≡ ψµ
1 − iψµ

2 . (32)

From (29) we have

(ε(λα + iθSα
β∂τλ

β)

− B′α
β [−ε(θβ − iθSβ

γ∂τθ
γ)])τ0 | B〉 = 0. (33)

According to the transformations (24) and (31) this is

(δX ′α −B′α
βδX

β)τ0 | B〉 = 0, (34)

which is equivalent to the equation

(∂σX
′α −B′α

β∂σX
β)τ0 | B〉 = 0. (35)

For the coordinate X ′µ we have the relation

∂σX
′µ = ∂τX

µ, (36)

that can be seen from the solution of the equation of mo-
tion,

Xµ
L = xµ

L + 2α′pµ
L(τ + σ) +

i
2

√
2α′

∑
n �=0

1
n
α̃µ

ne−2in(τ+σ),

Xµ
R = xµ

R + 2α′pµ
R(τ − σ) +

i
2

√
2α′

∑
n �=0

1
n
αµ

ne−2in(τ−σ),

(37)

where Xµ = Xµ
L + Xµ

R and X ′µ = Xµ
L − Xµ

R. Therefore
(35) and (36) give the boundary state equation (25). Now
we obtain the boundary state | B〉.

4.1 Boundary state

Combining the solutions of the equations of motion and
boundary state equations, we obtain these equations in
terms of modes. Consider some of the brane directions
and some of the transverse directions of the brane to be
compact on tori.

The boundary state of the bosonic part is

| Bbos, τ0〉 =
∑
{pα}

| Bbos, τ0, p
α〉, (38)

where

| Bbos, τ0, p
α〉 =

Tp

2

√
det(1 +B′) exp

(
iα′τ0

∑
i

(pi
op)

2

)

× δ(9−p)(xi − yi) exp

(
−

∞∑
m=1

1
m

e4imτ0αµ
−mΦµν α̃

ν
−m

)

× | 0〉
∏

i

| pi
L = pi

R = 0〉
∏
α

| pα〉. (39)

The set {yi} shows the position of the brane. The orthog-
onal matrix Φµ

ν is

Φµ
ν = (Qα

β , −δi
j),

Qα
β = [(1 +B′)−1(1 −B′)]α β . (40)

The state (39) is the general form of the state of [11].
The momentum of the closed string along the compact
directions of the brane, i.e. {Xαc}, is

pαc =
1
α′B

′αc

βc
Lβc ,

Lβc = NβcRβc , (41)

where Rβc is the radius of compactification of the Xβc -
direction and Nβc is the winding number of the closed
string around the Xβc -direction. For the interpretation of
(41) see [11].

For the NS⊗NS sector, we have the following fermionic
boundary state equations:

(
(1 − 2rθS)i

jb
j
re

−2irτ0

+ i(1 + 2rθS)i
j b̃

j
−re

2irτ0

)
| Bf , τ0〉NS = 0, (42)

for the transverse directions of the brane. For the direc-
tions along the brane we have
(
[1 +B′ + 2rθ(1 −B′)S] α

β b
β
r e−2irτ0

− i[1 −B′ − 2rθ(1 +B′)S]α β b̃
β
−re

2irτ0

)
| Bf , τ0〉NS

= 0. (43)

In both of these equations, “r” is a negative or positive
half-integer number.

Equations (42) and (43) have the following solution:

|Bf , η, τ0〉NS = KNS exp


iη

∞∑
r=1/2

(e4irτ0bµ−rΦ
(r)
µν b̃

ν
−r)


 | 0〉,

(44)

where η = ±1 is introduced to make the GSO projection
easily. The matrix Φ(r)

µν has the definition

Φµ
(r) ν = (Λα

(r) β , −Hi
(r) j), r ≥ 1

2
, (45)

Hi
(r) j = [(1 − 2rθS)−1(1 + 2rθS)]i j , (46)

Λα
(r) β =

(
[1 +B′ + 2rθ(1 −B′)S]−1

× [1 −B′ − 2rθ(1 +B′)S]
)α

β
. (47)

The consistence of the solutions of (43) for positive and
negative “r” requires the following relation between B′α

β
and Sα

β ,

B′α
β(S2)β

γ = (S2)α
βB

′β
γ . (48)

That is, B′ and S2 should commute. This is a restriction
that naturally arises on C and S.

The factor KNS is expected by the path integral with
boundary action

KNS =
∞∏

r=1/2

(det[1 +B′ + 2rθ(1 −B′)S]α β). (49)
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This is the general form of the result of [12]. For the ordi-
nary worldsheet i.e. θ = 0, this reduces to “1”, as expected
(note that

∑∞
r=1/2 1 ↔ limt→0(2t − 1)ζ(t) = 0). The as-

sumption of the smallness of θ gives

KNS = 1 +
θ

24
Tr[(Q0S)α

β ] + O(θ2), (50)

where Q0 is given by (40) for θ = 0. Note that we made
use of

∑∞
r=1/2 r ↔ −(1/2)ζ(−1) = 1/24, and

det(1 + θM) = 1 + θTr(M) + O(θ2) (51)

for the matrix M to obtain (50). Up to the first order of
θ, C does not appear in KNS.

For the R⊗R sector, the boundary state equations of
the worldsheet fermions in terms of the modes are

(di
0 + id̃i

0) | Bf , τ0〉R = 0, (52)

((1 − 2nθS)i
j d

j
ne−2inτ0

+i(1 + 2nθS)i
j d̃

j
−ne2inτ0) | Bf , τ0〉R = 0 (53)

for the transverse directions of the brane, and

(dα
0 − iQα

β d̃
β
0 ) | Bf , τ0〉R = 0, (54)

([1 +B′ + 2nθ(1 −B′)S]α β d
β
ne−2inτ0

− i[1 −B′ − 2nθ(1 +B′)S]α β d̃
β
−ne2inτ0) | Bf , τ0〉R

= 0 (55)

for the brane directions. In (53) and (55) the number “n”
is a non-zero integer.

The solution of (52)–(55) is

| Bf , η, τ0〉R (56)

= KR exp

[
iη

∞∑
n=1

(e4inτ0dµ
−nΦ

(n)
µν d̃

ν
−n)

]
| Bf , η〉(0)R ,

where | Bf , η〉(0)R is the solution of (52) and (54) [13,14].
We have

| Bf , η〉(0)R = M(η)
AB | A〉 | B̃〉, (57)

where | A〉 and | B̃〉 describe the vacuum of the fermionic
zero modes dµ

0 and d̃µ
0 . The matrix M(η) is [13,15]

M(η) = C̄Γ 0Γ ᾱ1 · · ·Γ ᾱp

(
1 + iηΓ11

1 + iη

)

× exp
(

−1
2
B′

αβΓ
αΓ β

)
, (58)

where “C̄” is the charge conjugation matrix. Also, the
brane is along the directions {X ᾱ1 , · · · , X ᾱp}. Note that
for the exponential in (58) there is a convention: the ex-
ponential must be expanded with the convention that all
gamma matrices anticommute; therefore, there are a finite
number of terms.

Again consistence of the solutions of (55), for positive
and negative “n” leads to the condition (48).

For the R⊗R sector of the superstring the matrices
Φ(n), H(n) and Λ(n) are

Φµ
(n) ν = (Λα

(n) β , −Hi
(n) j), n ≥ 1, (59)

Hi
(n) j = [(1 − 2nθS)−1(1 + 2nθS)]i j , (60)

Λα
(n) β =

(
[1 +B′ + 2nθ(1 −B′)S]−1

× [1 −B′ − 2nθ(1 +B′)S]
)α

β
. (61)

The factor KR is

KR =
∞∏

n=1

(det[1 +B′ + 2nθ(1 −B′)S]αβ). (62)

For the ordinary worldsheet, this factor reduces to the
expected result (det[(1 + B)α

β ])−1/2 of [12] (note that∑∞
n=1 1 ↔ ζ(0) = −1/2). The parameter θ is small, there-

fore

KR =
1√

det[(1 +B)α
β ]

×
[
1 − θ

2

(
i
2
Tr[(1 +B)−1C]α β +

1
3
Tr[(Q0S)α

β ]
)]

+ O(θ2), (63)

where we have used
∑∞

n=1 n ↔ ζ(−1) = −1/12.

5 Open superstring

Now we obtain the boundary conditions of the open super-
string. From now on consider the metric of the spacetime
to be constant, gµν . Also let the mixed components of the
metric be zero, i.e. gαj = 0. Furthermore assume that the
field B′ has non-zero components only along the brane,
i.e. the components B′

ij and B′
αj are zero. The variation

of the action (15) gives the boundary conditions

(δXi)σ0 = 0, (64)

(gαβ∂σX
β −B′

αβ∂τX
β)σ0 = 0 (65)

for the bosonic part, where σ0 = 0, π show the boundaries.
The worldsheet fermions obey the following boundary con-
ditions:

(gij(ψ
j
1 − iψj

2) − iθSij∂τ (ψj
1 − iψj

2))σ0 = 0, (66)(
gαβ(ψβ

1 + iψβ
2 ) +B′

αβ(ψβ
1 − iψβ

2 ) + iθSαβ∂τ (ψβ
1 + iψβ

2 )

−iθB′
αβS

β
γ∂τ (ψγ

1 − iψγ
2 )
)

σ0

= 0. (67)

Similar to the closed superstring, one can show that these
boundary conditions respect the worldsheet supersymme-
try. The open string boundary conditions (64)–(67) can be
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obtained from the closed one, with the exchanges ∂τX
µ ↔

∂σX
µ and ψµ

1 → −ψµ
1 . This is equivalent to the change

ε2 → −ε2 in the supersymmetry transformations (21).
According to the boundary condition (64), the trans-

verse directions of the brane remain ordinary. The bound-
ary condition (65) says that the worldvolume of the brane
is a non-commutative space. The parameter of the space-
time non-commutativity is [2]

Θµν = −2πα′
(

1
g +B′B

′ 1
g −B′

)µν

. (68)

The appearance of B′ instead of B in this quantity shows
the effects of the non-commutativity of the worldsheet on
the spacetime non-commutativity. Thus for non-zero “θ”
and “C”, the brane directions are non-commutative, even
if the B-field vanishes.

If we apply the assumption of the smallness of θ in
(68), we obtain

Θµν = Θµν
0 +

i
2
θΩµν + O(θ2), (69)

where the matrix Ω is

Ω = Θ0C(g −B)−1 − (g +B)−1CΘ0

− 2πα′(g +B)−1C(g −B)−1; (70)

as expected, Ω is an antisymmetric matrix. The param-
eters Θµν

0 show the spacetime non-commutativity for the
ordinary string worldsheet.

The effective metric of the open string is [2]

Gµν = gµν − (B′g−1B′)µν = G(0)
µν

− i
2
θ(Bg−1C + Cg−1B)µν +

1
4
θ2(Cg−1C)µν ,

Gµν =
(

1
g +B′ g

1
g −B′

)µν

. (71)

Up to the order θ, Gµν is

Gµν = Gµν
0 +

i
2
θ(G0C(g −B)−1 − (g +B)−1CG0)µν

+ O(θ2), (72)

where Gµν
0 and G(0)

µν refer to the metric that is seen by the
open string with ordinary worldsheet.

Now we use the metric (71) to calculate the first cor-
rection of Yang–Mills and open string couplings

1
g2
YM

=
(α′)(3−p)/2

(2π)p−2gs

(
det(g +B′)

detG

)1/2

, (73)

Gs =
(α′)(3−p)/2

(2π)p−2 g2
YM. (74)

These give

gYM = g
(0)
YM

(
1 +

i
8
θTr[(g +B)−1C]

)
+ O(θ2), (75)

Gs = G(0)
s

(
1 +

i
4
θTr[(g +B)−1C]

)
+ O(θ2), (76)

where g(0)
YM and G

(0)
s are the Yang–Mills and open string

couplings for the ordinary worldsheet, in non-commutative
spacetime.

6 The parameter of the non-commutativity

Now we suggest some definitions for the non-commuta-
tivity parameter of the string worldsheet. These defini-
tions are independent of the assumption of the smallness
of θab, that we used in previous sections. If we change the
worldsheet coordinates ξ0 and ξ1 to ξ′0 = ξ′0(ξ0, ξ1) and
ξ′1 = ξ′1(ξ0, ξ1), the tensor θab changes to θ′a′b′

,

θ′a′b′
=
∂ξ′a′

∂ξa

∂ξ′b′

∂ξb
θab. (77)

As expected, this implies that non-commutativity depends
on the coordinate system of the string worldsheet. Note
that according to the relation (77) we can choose a coor-
dinate system on the string worldsheet with constant non-
commutativity parameter, i.e. independent of the world-
sheet coordinates.

6.1 The first definition

Since the quantity θabθ
ab does not change from one coor-

dinate system of the worldsheet to another one, we give
the first definition of θab as

θabθ
ab = ΘµνΘ

µν . (78)

In the coordinate system (σ, τ), the left hand side is −2θ2.
Raising the indices of Θµν leads to

θ2 =
1
2
ΘµνGνν′Θν′µ′

Gµ′µ ≡ 1
2
Tr(ΘGΘG). (79)

Again for Cµν �= 0, the right hand side also contains θ.
Therefore (79) is an equation for θ.

6.2 The second definition

Consider the non-commutative Yang–Mills theory and the
background dependence of it [2]. For the background B,
the non-commutativity of spacetime is described by Θ0,
and for B′, it is described by Θ. It has been discussed in
[2] that the background independence of non-commutative
Yang–Mills at fixed “gµν” leads to this fact: that the quan-
tity g2

YM(detΘ)1/2 must be invariant under the changes of
the background field. Therefore

g2
YM

√
detΘ = (g(0)

YM)2
√

detΘ0. (80)

We suggest this equation as a second definition for the
parameter θ. According to (68) and (73), the left hand
side is a function of θ; therefore from this equation θ is
calculated. Note that for the zero slope limit [2], the above
equation reduces to an identity, i.e. the left hand side will
be independent of θ.
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7 Conclusions and remarks

The non-commutative worldsheet of the superstring af-
fects many things. The additional terms to the non-com-
mutative action of the superstring generalize the super-
symmetry transformations, the boundary state of the
closed superstring, the boundary conditions of the open
superstring, Yang–Mills and open string couplings, and
many other things. The new closed string boundary state
describes a brane that is more general than the mixed
branes [11,15]. The non-commutativity of the string
worldsheet also changes the spacetime non-commutativity.
Therefore even if the background B-field vanishes, space-
time remains non-commutative.

We suggested some definitions for the non-commuta-
tivity parameter of the string worldsheet that relate this
parameter to the corresponding one of spacetime.

As it has been discussed in [9], renormalization exhibits
the large distance spacetime physics to be encoded in the
short distance structure of the worldsheet. In other words,
the renormalization is justified by the divergence of L2 =
ln(Λ/µ).

According to the renormalization group, the short two
dimensional UV cut-off distance Λ−1 slides to shorter and
shorter distances Λ−1

0 . In other words, there is an effective
worldsheet at the two dimensional distance Λ−1. The ef-
fective worldsheet can be used to calculate effective string
effects at spacetime distance L. Since the non-commuta-
tivity parameter of the worldsheet breaks the scale invari-
ance of the worldsheet theory, it can be interpreted as the
UV cut-off. Therefore the cut-off distances Λ−1

0 and Λ−1

correspond to two non-commutativity parameters θ0 and θ
respectively. This implies that for the non-commutativity
parameter of the worldsheet, there are some bounds.
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